S8 Table. Plasmids used in this study.

Plasmid name	Description	Reference
pJG1100	Suicide vector for mutant construction, Hyg ^R , Kan ^R , sacB.	[6]
pGA44	Integrative vector at L5 attB site, PTR promoter, Str ^R /Spect ^R .	[7]
pGA80	pMV261-derived vector, carrying the L5 <i>int</i> gene for expression <i>in trans</i> , lacking oriM, Kan ^R .	[7]
pJG1100-espL-UP/DOWN	Suicide vector for mutant construction derived from pJG1100, carrying 1 kb upstream and downstream regions of <i>espL</i> .	This study
pGA44-espL	Vector for complementation of $\Delta espL$ mutant strain. Derived from pGA44, $espL$ is expressed by the PTR promoter.	This study
pGA44-whiB6	Vector for expression of <i>whiB6</i> . Derived from pGA44, <i>whiB6</i> is expressed by the PTR promoter.	This study
pGA44- <i>espL</i> .HA	Vector for complementation of $\Delta espL$ mutant strain. Derived from pGA44, $espL$.HA (tag at C-terminus) is expressed by the PTR promoter.	This study
pGA44-HA. <i>espL</i>	Vector for complementation of $\Delta espL$ mutant strain. Derived from pGA44, HA. $espL$ (tag at N-terminus) is expressed by the PTR promoter.	This study
pGA44-espE.HA	Vector for expression of <i>espE</i> .HA (tag at C-terminus). Derived from pGA44, <i>espE</i> .HA is expressed by the PTR promoter.	This study
pGA44-espE.HA+pmycP1-espL	Vector for expression of <i>espE</i> .HA (tag at C-terminus). Derived from pGA44, <i>espE</i> .HA is expressed by the PTR promoter. <i>espL</i> is expressed by the <i>mycP1</i> promoter.	This study

pGA44-espE.HA+pmycP1-whiB6	Vector for expression of <i>espE</i> .HA (tag at C-terminus). Derived from pGA44,	This study
	espE.HA is expressed by the PTR promoter. whiB6 is expressed by the	
	mycP1 promoter.	

Bibliography

- 1. Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, et al. Genome-wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosis. Cell Rep. 2013;5: 1121–1131. doi:10.1016/j.celrep.2013.10.031
- 2. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393: 537–544. doi:10.1038/31159
- 3. Bottai D, Majlessi L, Simeone R, Frigui W, Laurent C, Lenormand P, et al. ESAT-6 secretion-independent impact of ESX-1 genes espF and espG1 on virulence of Mycobacterium tuberculosis. J Infect Dis. 2011;203: 1155–1164. doi:10.1093/infdis/jiq089
- 4. Chen JM, Boy-Röttger S, Dhar N, Sweeney N, Buxton RS, Pojer F, et al. EspD is critical for the virulence-mediating ESX-1 secretion system in Mycobacterium tuberculosis. J Bacteriol. 2012;194: 884–893. doi:10.1128/JB.06417-11
- 5. Lou Y, Rybniker J, Sala C, Cole ST. EspC forms a filamentous structure in the cell envelope of *M ycobacterium tuberculosis* and impacts ESX-1 secretion: Filamentous structure formation by EspC. Mol Microbiol. 2017;103: 26–38. doi:10.1111/mmi.13575
- 6. Gomez JE, Bishai WR. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A. 2000;97: 8554–8559. doi:10.1073/pnas.140225297
- 7. Kolly GS, Boldrin F, Sala C, Dhar N, Hartkoorn RC, Ventura M, et al. Assessing the essentiality of the decaprenyl-phospho-D-arabinofuranose pathway in *Mycobacterium tuberculosis* using conditional mutants: Druggability of the *M. tuberculosis* DPA pathway. Mol Microbiol. 2014;92: 194–211. doi:10.1111/mmi.12546